
An Evolutionary Algorithm for Big Data
Multi-class Classification Problems

Michael F. Korns

Analytic Research Foundation, 2240 Village Walk Drive Suite 2305, Henderson
Nevada 89052 mkorns@korns.com.

Abstract.
As symbolic regression (SR) has advanced into the early stages of com-

mercial exploitation, the poor accuracy of SR, still plaguing even the most
advanced commercial packages, has become an issue for industrial users. Users
expect to have the correct formula returned, especially in cases with zero noise
and only one basis function with minimally complex mathematical depth.

At a minimum, users expect the response surface of the SR tool to be easily
understood, so that the user can know a priori on what classes of problems
to expect excellent, average, or poor accuracy. Poor or unknown accuracy is
a hindrance to greater academic and industrial acceptance of SR tools.

In several previous papers, we published a complex algorithm for modern
symbolic regression which is extremely accurate for a large class of Symbolic
Regression problems on noiseless data. The class of problems, on which SR
is extremely accurate, is described in detail in these previous papers. This
algorithm is extremely accurate, in reasonable time on a single processor,
for from 25 up to 3000 features (columns). Further research has shown that
the extremely accurate symbolic regression algorithms also convey greater
accuracy even in noisy circumstances - albeit not extreme accuracy.

Armed with this level of success in symbolic regression, we naively thought
that achieving extreme accuracy applying genetic programming to symbolic
multi-class classification would be an easy goal. However, we soon discovered
that algorithms which convey extreme accuracy in symbolic regression do not
translate directly into algorithms which convey extreme accuracy in symbolic
multi-class classification. Furthermore, others have encountered serious issues
applying genetic programming to symbolic multi-class classification (Castelli
2013).

This is the first paper in a planned series of papers attempting to develop
the algorithms necessary for achieving extreme accuracy in genetic program-
ming applied to symbolic multi-class classification.

In this paper we develop an evolutionary algorithm for optimizing a single
symbolic multi-class classification candidate. The algorithm is designed for



2 Michael F. Korns

big data situations such that the computational effort grows linearly as the
number of features and training points increase. The algorithm is tested us-
ing statistically correct, out of sample training and testing. The algorithm’s
behavior is demonstrated on both theoretical problems and on previously
published UCI and industry tests cases.

Key words: Symbolic Classification, Abstract Expression Grammars, Gram-
mar Template Genetic Programming, Genetic Algorithms, Particle Swarm.



Title Suppressed Due to Excessive Length 3

1 Introduction

The discipline of Genetic Programming (GP)(Koza 1992) (Koza 1994) (Koza
1999) has matured significantly in the last two decades. There are numerous
practical successes reported in many application domains (Poli 2008)(Gan-
domi 2015). A great deal of work has been done to strengthen the the-
oretical foundations of GP (Langdon 2002). There is at least one com-
mercial package Symbolic Regression (SR) package which has been on the
market for several years http://www.rmltech.com/. There is now at least
one well documented commercial symbolic regression package available for
Mathematica www.evolved-analytics.com. There is at least one very well
done open source symbolic regression package available for free download
http://ccsl.mae.cornell.edu/eureqa. In addition to our own ARC system (Ko-
rns 2010), currently used internally for massive (million row) financial data
nonlinear regressions, there are a number of other mature symbolic regression
packages currently used in industry including (Smits 2005) and (Kotanchek
2008). Plus there is another commercially deployed regression package which
handles up to 50 to 10,000 input features using specialized linear learning
(McConaghy 2011).

Yet, despite its increasing sophistication, genetic programming has encoun-
tered serious issues addressing multi-class classification applications (Castelli
2013).

An algorithm has been developed, specifically for genetic programming
applications in multi-class classification, called M2GP, which has achieved
reasonable accuracy in several multi-class classification tests (Ingalalli 2014).
One highly attractive attribute of the M2GP algorithm is its solid theoretical
machine learning foundations. One unfortunate issue with the M2GP algo-
rithm, is the requirement to compute several matrix multiplications and one
matrix inversion per class, and the necessity that the crucial class covariance
matrix be non-singular. Furthermore, the M2GP algorithm requires several
vector products and one matrix multiply per training point for scoring. As
the number of classes and the number of training examples grows larger, in
a multi-class classification problem, the computational requirements for the
M2GP algorithm increases geometrically. In financial applications there is no
a priori guarantee that all of the class covariance matrices will be non-singular.
Plus, at least in many financial applications, we have found that the number
of classes and training examples can be quite large.

We are interesting in exploring a purely evolutionary alternative to the
M2GP algorithm which will not require matrix inversions, and which will
operate correctly in conditions wherein the M2GP class covariance matrix is
singular.

Before continuing with the discussion of our alternative multi-class classi-
fication algorithms for big data problems, we proceed with a basic introduc-



4 Michael F. Korns

tion and formalization of Genetic Programming Classification (GPC), liber-
ally adapting terminology from M2GP (Castelli 2013) and from Generalized
Linear Models (GLMs) (Nelder 1972).

The formalization of genetic programming classification is the class of Ge-
netic Programming Classifier Models (GPCMs). A GPCM is a collection of K
discriminant functions Dk; k = 1,2,...,K, a dependent unordered categorical
variable y with integer values from 1 through K, and an independent data
point with M features x = <x1, ..., xM>: such that

• (E1) ey(x) = nomial(c10+(c11D1(x)),...,cK0+(cK1DK(x)))
• (E2) ak=max(a1,...,aK) implies k = nomial(a1,...,aK)
• (E3) y=ey implies match(y,ey)=0 and y<>ey implies match(y,ey)=1

Given a collection of GPCMs, a collection of independent data points, X,
and a collection of dependent categorical variables, Y, the fittest GPCM is
the GPCM which minimizes match(Y,EY).

The discriminant functions are a broad generalization and can represent
any possible linear or nonlinear formula, as in the following examples:

• (E4) D1 = x3

• (E5) D2 = x1+x4

• (E6) D3 = sqrt(x2)/tan(x5/4.56)
• (E7) D4 = tanh(cos(x2*.2)*cube(x5+abs(x1)))

Viewing the problem in this fashion, we gain an important insight. Genetic
programming classification does not add anything to the standard techniques
of classification. The value added by GPC lies in its abilities as a search
technique: how quickly and how accurately can GPC find an optimal set of
discriminant functions D. The immense size of the search space provides ample
need for improved search techniques. In basic Koza-style tree-based Genetic
Programming (Koza 1992) the genome and the individual are the same Lisp
s-expression which is usually illustrated as a tree. Of course the tree-view of an
s-expression is a visual aid, since a Lisp s-expression is normally a list which is
a special Lisp data structure. Without altering or restricting basic tree-based
GP in any way, we can view the individual discriminant functions not as trees
but instead as s-expressions such as this depth 2 binary tree s-exp: (/ (+ x2
3.45) (* x0 x2)), or this depth 2 irregular tree s-exp: (/ (+ x4 3.45) 2.0).

In basic GP the non-terminal nodes are all operators (implemented as Lisp
function calls), and the terminal nodes are always either real number constants
or input features. The maximum depth of a GP individual is limited by the
available computational resources; but, it is standard practice to limit the
maximum depth of a GP individual to some manageable limit at the start of
a genetic programming run.



Title Suppressed Due to Excessive Length 5

Given any selected maximum depth d, it is an easy process to construct
a maximal binary tree s-expression Ud, which can be produced by the GP
system without violating the selected maximum depth limit. As long as we
are reminded that each f represents a function node while each t represents a
terminal node (either a feature v or a real number constant c), the construction
algorithm is simple and recursive as follows.

• (U0): t
• (U1): (f t t)
• (U2): (f (f t t) (f t t))
• (U3): (f (f (f t t) (f t t)) (f (f t t) (f t t)))
• (Ud): (f Ud−1 Ud−1)

The basic GP symbolic regression system (Koza 1992), which we will adapt
for symbolic classification, contains a set of functions F, and a set of terminals
T. If we let t ∈ T, and f ∈ F ∪ ξ, where ξ(a,b) = ξ(a) = a, then any basis
function produced by the basic GP system will be represented by at least
one element of Ud. Adding the ξ function allows Ud to express all possible
basis functions generated by the basic GP system to a depth of d. Note to
the reader, the ξ function performs the job of a pass-through function. The
ξ function allows a fixed-maximal-depth expression in Ud to express trees of
varying depth, such as might be produced from a GP system. For instance,
the varying depth GP expression x2 + (x3 - x5) = ξ(x2,0.0) + (x3 - x5) =
+(ξ(x2 0.0) -(x3 x5)) which is a fixed-maximal-depth expression in U2.

In addition to the special pass through function ξ, in our system we also
make additional slight alterations to improve coverage, reduce unwanted er-
rors, and restrict results from wandering into the complex number range. All
unary functions, such as cos, are extended to ignore any extra arguments so
that, for all unary functions, cos(a,b) = cos(a). The sqroot and ln functions
are extended for negative arguments so that sqroot(a) = sqroot(abs(a)) and
ln(a) = ln(abs(a)).

Given this formalism of the search space, it is easy to compute the size of
the search space, and it is easy to see that the search space is huge even for
rather simple discriminant functions. For our use in this chapter the function
set will be the following functions: F = (+ - * / <= >= maximum minimum
inv ξ), where inv(x) = (1.0/x), where (x<=y) is 1.0 if true or is 0.0 if false,
where (x>=y) is 1.0 if true or is 0.0 if false, and where ξ(a,b) = ξ(a) = a. The
terminal set are the features x1 through xM and the real constant c, which
we shall consider to be 264 in size.

The fitness measure, used in this paper, is the Classification Error Percent
(CEP) computed as the average error percent on a per class basis. The formula
for the computation of the CEP fitness measure is shown in fitness equation
(F1). The term Errork refers to the total number of unmatched cases for the



6 Michael F. Korns

class k - i.e. match(ey,y)=1 for class k. The term Countk refers to the total
number of training points for class k.

• (F1) CEP = average(Errork/Countk)

In this paper we introduce a Multilayer Discriminant Classifier (MDC)
algorithm for big data genetic programming multi-class classification. The
MDC algorithm is evolutionary in approach. Each layer of the algorithm re-
quires only one pass over the data, including scoring. So MDC’s computational
complexity grows linearly with larger training data points and classes. Fur-
thermore, MDC’s multilayer approach distributes the evolutionary attention
across the entire genetic programming run so that more promising candidates
receive more evolutionary attention and less promising candidates receive less
evolutionary attention.

Prior to writing this chapter, a great deal of tinker-engineering was per-
formed on the Lisp code supporting the MDC algorithm. For instance, all
generated candidate code was checked to make sure that the real numbers
were loaded into Intel machine registers without exception. All vector point-
ers were checked to make sure they were loaded into Intel address registers at
the start of each loop rather than re-loaded with each feature reference. As
a result of these engineering efforts, the MDC algorithm is quite practical to
run on a personal computer. Of course a cloud configuration can always be
used to achieve enhanced performance in much shorter elapsed times.

2 The MDC Algorithm

The Multilayer Discriminant Classification (MDC) algorithm is composed of
three main layers of evolutionary activity. These three layers focus on the
optimization of the GPCM coefficients for the optimal GPCM candidate, and
are a direct alternative to the more mathematically correct M2GP algorithm.
None of the MDC algorithm layers require matrix inversion. Therefore the
MDC algorithm can operate in training conditions which do not meet the
basic requirements of the M2GP algorithm.

The MDC algorithm attempts to optimize the following equation for the
K selected discriminant functions Dk(x).

• (E1) ey(x) = nomial(c10+(c11D1(x)),...,cK0+(cK1DK(x)))

The MDC algorithm is evolutionary in approach. Each layer of the al-
gorithm requires only one pass over the data, including scoring. The MDC
algorithm’s multilayer approach distributes the evolutionary attention across
the entire genetic programming run so that more promising candidates re-
ceive more evolutionary attention and less promising candidates receive less
evolutionary attention.



Title Suppressed Due to Excessive Length 7

2.1 Partial Bipolar Regression

The first layer of the MDC algorithm attempts to find a quick initial approx-
imation of the optimal coefficients in the selected GPCM.

• (E1) ey(x) = nomial(c10+(c11D1(x)),...,cK0+(cK1DK(x)))

At initialization time, randomly selected coefficients for the current can-
didate GPCM (E1) will generally score a Classification Error Percent (CEP)
between 80% and 99% especially when as K grows larger even when the
GPCM is an exact match for the dependent variable Y. We need a
quick initialization approach which scores a CEP much closer to 0% even for
large K. Partial Bipolar Regression (PBR) is just such a quick GPCM coeffi-
cient initialization methodology especially when the GPCM is an exact match
for the dependent variable Y.

For each new GPCM, the MDC algorithm runs K Partial Bipolar Regres-
sion (PBR) single passes through the data followed by a single scoring pass
thought the data. To understand how this works, notice that formula (E1) is
composed of K simple discriminant formulas as follows.

• (E8) ck0+(ck1Dk(x))

The PBR layer runs a simple single pass regression on each of the K dis-
criminant formulas against the dependent variable y; however, as each y is
loaded its value is temporarily altered on the fly according to the following
rule. If y=k, then y becomes +1. If y<>k, then y becomes -1. This partial
bipolar regression produces coefficient candidates ck0 and ck1 which are ap-
proximately in the general ballpark required for an initial guess.

Once all K discriminant formulas have been partially bipolar regressed, a
single pass scoring run usually scores a CEP in the approximate range of from
5% to 20%, in cases where the GPCM is an exact match for the dependent
variable Y, even when K grows larger.

Obviously, in cases where the GPCM is a poor match for the dependent
variable Y, the returned CEP will remain in the 80% to 99% range as if the
coefficients had been randomly chosen. This initial guess CEP discrepancy
been exact matches and poor matches presents an evolutionary activity dis-
tribution opportunity which PBR measures by computing the PBR success
rate. The PBR success rate is the percent inverse of CEP as follows.

• (E9) PBRSuccessRate = 100%-CEP

The PBR success rate will be used in the next layer of the MDC algorithm
to distribute evolutionary activity more efficiently.



8 Michael F. Korns

2.2 Modified Sequential Minimization

The second layer of the MDC algorithm is an opportunistic modification of
Platt’s sequential minimization optimization algorithm often used to train
support vector machines (Platt 1998).

At the start of the modified sequential minimization (MSM) layer, the can-
didate GPCM contains a swarm pool of a single set of coefficient constants
which was produced by the PBR layer. Also the CEP for this single entry in
the swarm pool and the PBR success rate are both available. The MSM layer
multiplies the PBR success rate times 100 to produce the MSM repetition
count, which determines the number of times the MSM will repeat without
CEP improvement. The higher the PBR success rate, the greater the count of
times the MSM will repeat. So the PBR success rate determines the evolution-
ary activity spent on the current candidate. Better candidates receive more
evolutionary activity. Worse candidates receive less evolutionary activity.

For each repetition of the MSM, on the current candidate GPCM, the most
fit entry in the swarm pool is chosen and a single erroneous training point is
chosen at random. Since the chosen training point is in error, we know that
its estimated dependent variable will not match the actual dependent variable
i.e. ey<>y. Let us assume that ey=i and that y=j. We therefore know that
two discriminant formulas have the following relationship.

• (E10) (ci0+(ci1Di(x))) > (cj0+(cj1Dj(x)))

And we also know that, for that single erroneous training point, the max-
imum of all discriminant formulas, other than i and j, which we shall name
α, will be also be less than (ci0+(ci1D

i(x))), which value we shall name
β. Furthermore, we know that we can convert this single erroneous training
point into a successful match if we alter the i and j coefficients such that the
following relationships becomes true.

• (E11) α <= (ci0+(ci1Di(x))) < (cj0+(cj1Dj(x))) <= β

We select a value between α and β at random then alter cj0 and cj1 such
that (cj0+(cj1D

j(x))) is equal to the randomly selected value and then
alter ci0 and ci1 such that (ci0+(ci1D

i(x))) is slightly less than the selected
value. Of course we do not know what havoc these alterations will create for
the other training points, but we do know that this selected training point
will be converted from an error to a match.

A single pass scoring run is performed using the newly altered coefficients.
The resulting CEP and the altered coefficients are inserted into the swarm
pool sorted by CEP. If the new CEP is an improvement then we repeat the
MSM layer once again. If the new CEP is NOT an improvement then we
decrement the MSM repetition count. If the MSM repetition count is greater



Title Suppressed Due to Excessive Length 9

than zero then we repeat the MSM layer once again; otherwise, we terminate
the MSM layer.

Upon termination of the final MSM repetition the final CEP is used to
compute the MSM success rate as follows.

• (E12) MSMSuccessRate = 100%-CEP

The MSM success rate will be used in the next layer of the MDC algorithm
to distribute evolutionary activity more efficiently.

2.3 Bees Swarm Optimization

The third layer of the MDC algorithm is the repeated application of the well
known bee’s swarm optimization algorithm often used in swarm evolution
(Karaboga 2009).

At the start of the bees swarm optimization (BSO) layer, the candidate
GPCM contains a swarm pool of several sets of coefficient constants which
were produced by the MSM layer. Also the CEP for the most fit entry in the
swarm pool and the MSM success rate are both available. The BSO layer mul-
tiplies the MSM success rate times 100 to produce the BSO repetition count,
which determines the number of times the BSO will repeat without CEP im-
provement. The higher the MSM success rate, the greater the count of times
the BSO will repeat. So the MSM success rate determines the evolutionary
activity spent on the current candidate. Better candidates receive more evo-
lutionary activity. Worse candidates receive less evolutionary activity.

For each repetition of the BSO, the standard bee’s optimization algorithm
is applied (Karaboga 2009). Then a single pass scoring run is performed using
the new coefficient alterations. The resulting CEP and the altered coefficients
are inserted into the swarm pool sorted by CEP. If the new CEP is an im-
provement then we repeat the BSO layer once again. If the new CEP is NOT
an improvement then we decrement the BSO repetition count. If the BSO rep-
etition count is greater than zero then we repeat the BSO layer once again;
otherwise, we terminate the BSO layer.

At the end of the BSO layer, the coefficients of the current GPCM candi-
date are fully optimized as far as the MDC algorithm is concerned.

3 Computational Effort Distribution

In this section we create the several theoretical test problems which demon-
strate the manner in which the MDC algorithm distributes computational
effort as it attempts to optimize the coefficients of a candidate GPCM. All
of these theoretical test problems attempt to optimize coefficients for a single



10 Michael F. Korns

artificially created GPCM against a target which has been explicitly created
to demonstrate test cases which are poorly matched versus test cases which
are well matched. Using the following formula (E13), we will create a theoret-
ical test data set using the following five discriminant formulas. Therefore we
are trying to classify across K = 5 classes.

• (E13) y=nominal(3.4+(1.57*x0),2.1-(-39.34*(x4*x1)),(2.13*(x2/x3)),1.0-(46.59*(x3*x7)),(11.54*x4))

Next we will use the MDC algorithm to optimize coefficients for the fol-
lowing candidate GPCMs, each with five proposed discriminants.

• (C01) nomial(x0,x1,x2,x3,x4)
• (C02) nomial(x0,x1*x4,x2,x3,x4)
• (C03) nomial(x0,x1*x4,x2/x3,x3,x4)
• (C04) nomial(x0,x1*x4,x2/x3,x3*x7,x4)

The results of using the MDC algorithm to optimize each of the four
test GPCMs, on the theoretical test data created with formula (E13), are
shown in Table 1. Notice how the fitness Classification Error Percent (CEP)
improves as the tests move closer to matching formula (E13). Also notice
how the computational effort increases as the tests move closer to matching
formula (E13). The MDC algorithm distributes more computational effort
to the more promising candidates and less computational effort to the less
promising candidates.

Table 1. MDC Evolutionary Effort

Test PBR MSM BSO CEP
C01 6 49 48 0.4550
C02 6 73 121 0.2187
C03 6 119 235 0.2033
C04 6 229 511 0.0000

(Note1: the number of PBR layer attempts is listed in the (PBR) column) (Note2:
the number of MSM layer attempts is listed in the (MSM) column) (Note3: the
number of BSO layer attempts is listed in the (BSO) column) (Note4: the fitness
score of the optimized GPCM on test data is listed in the (CEP) column)

Deterministic algorithms, like M2GP, apply the same amount of com-
putational effort toward optimizing the coefficients of each GPCM equally.
Whereas the MDC algorithm distributes the computational effort unevenly
throughout the entire evolutionary process with less promising candidates
receiving less computational effort and more promising candidates receiving
more computational effort.



Title Suppressed Due to Excessive Length 11

4 Theoretical Test Problems

The MDC algorithm is NOT adequate for performing a whole symbolic multi-
class classification run. MDC is only adequate to optimize the coefficients
of a selected GPCM candidate. Therefore we will be required to develop a
temporary symbolic multi-class classification strategy wrapped around the
MDC algorithm in order to proceed with testing.

Since this is a preliminary paper in a planned series of papers investigat-
ing extreme accuracy algorithms vis a vis symbolic multi-class classification,
we will create a first draft multi-class classification strategy as a temporary
methodology to allow further testing. We do not yet know whether MDC is
the most propitious coefficient optimization algorithm, or whether some hy-
brid of M2GP and MDC, or some other algorithm might be better. We are
just getting started in our investigation.

Our temporary symbolic multi-class classification algorithm, to wrap
around the MDC algorithm, will be composed of K+1 separate search islands
- a general search island and a specific search island for each class. During the
classification run, all K+1 search islands will use Pareto front optimization to
select GPCM candidates, optimize their discriminant coefficients with MDC,
then score the final CEP. Whenever a new global most fit GPCM is discov-
ered - in any of the K+1 search islands - the K specialized search islands are
reset to the new global most fit GPCM. Each kth specialized search island
then attempts to further optimize the best GPCM by holding all discriminant
functions fixed, EXCEPT the kth discriminant function which is evolved using
Pareto front evolution.

Our temporary Pareto front search strategy surrounds the MDC algorithm
with a general attempt to find the best GPCM (search island 0) and K at-
tempts specific to each of the K classes (search islands 1 thru K) to find the
best GPCM. No assertion is made that this temporary Pareto front strategy
will be the best or final search strategy achieving extreme accuracy in sym-
bolic multi-class classification. It is just a temporary search strategy to allow
us to proceed with testing.

In this section we create four theoretical training and separate test data
sets using discriminant formulas (T1) thru (T4). Each theoretical test problem
has K=5 classes. The following tables shows the results for each of the four
symbolic classification runs.

• Theoretical Test Problems
• (T1): y=nomial(1.57*x0,-39.34*x1,2.13*x2,46.59*x3,11.54*x4)
• (T2): y=nomial(3.4+(1.57*x0),2.1-(-39.34*(x4*x1)),2.13*(x2/x3),1.0-(46.59*(x5*x5)),11.54*x4)
• (T3): y=nomial(3.4+(1.57*x0),2.1+(-39.34*minimum(x4*x1,x6)),2.13*((x2/x3)<=(x7)),1.0-

(46.59*(x5*x9)),11.54*x4)
• (T4): y=nomial(3.4+(1.57*(x0<=x11)),2.1+(9.34*minimum(x4*x1,x6)),2.13*maximum((x2/x3)<=x7,x19),1.0-

(46.59*maximum(x15,x8)),11.54*x4)



12 Michael F. Korns

Table 2. MDC Theoretical Test Problems Results

Test WFFs Train-Hrs Train-CEP Test-CEP
T01 5K 0.59 0.0000 0.0000
T02 10K 2.011 0.0398 0.0411
T03 71K 10.08 0.0606 0.0810
T04 76K 10.08 0.0964 0.0976

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fitness
score of the champion on the noiseless training data is listed in the (Train-CEP)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-CEP) column with .0880 average fitness)

The theoretical testing demonstrates the computational ease of using the
MDC algorithm for GPCM coefficient optimization. Training is quick and
grows only linearly as the number of classes and training points grow larger.
The first simple test (T1) achieves extreme accuracy because the temporary
Pareto front strategy selected an exact match GPCM during the run. As one
would expect the CEP fitness scores get worse as the target discriminant
functions grow more mathematically complex (further from linear). This is
the result of the temporary Pareto front strategy not selecting exact match
GPCMs during the run. A problem which will have to be addressed in the
future papers if we are to achieve extreme accuracy in symbolic multi-class
classification.



Title Suppressed Due to Excessive Length 13

5 Real Data Test Problems

In this section we apply the MDC algorithm wrapped in its temporary Pareto
front strategy on real world test problems taken from several sources. Some
test data sets were downloaded from the University of California at Irvine ma-
chine learning repository https://archive.ics.uci.edu/ml/datasets.html. Other
test data sets were downloaded from the Broad Institute cancer data sets
http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi.

Another Volatility data set was constructed from the Yahoo down loadable
VIX and UVXY daily historical data sets. This test problem attempted to
classify the next day’s profit or loss in the UVXY ETF, entirely from the
previous day’s percent change in the VIX and the percent change in the 140
day moving average of the VIX.

• Real Data Test Problems
• (R01): Acute Myeloid Leukemia (from Broad Institute)
• (R02): Iris (from UCI)
• (R03): Heart Disease (from UCI)
• (R04): Volatility (from Yahoo VIX and UVXY historical data)
• (R05): Bank Marketing (from UCI)

The results of running the MDC algorithm wrapped in its temporary
Pareto front strategy on these real world test problems is shown in the table
below.

Table 3. MDC Real Data Test Problems Results

Test WFFs Train-Hrs Train-CEP Test-CEP
R01 9K 0.24 0.0277 0.0000
R02 10K 0.11 0.0133 0.0134
R03 548K 10.00 0.0912 0.0925
R04 9K 0.14 0.0704 0.0705
R05 9K 0.29 0.1077 0.1097

(Note1: the number of regression candidates tested before finding a solution is listed
in the Well Formed Formulas (WFFs) column) (Note2: the elapsed hours spent
training on the training data is listed in the (Train-Hrs) column) (Note3: the fitness
score of the champion on the noiseless training data is listed in the (Train-CEP)
column) (Note4: the fitness score of the champion on the noiseless testing data is
listed in the (Test-CEP) column with .0681 average fitness)

This early in our planned investigation of extreme accuracy in multi-class
classification, we did not expect to achieve the results shown above. While
we are very far from any industrially usable techniques, the MDC algorithm



14 Michael F. Korns

wrapped in its temporary Pareto front strategy achieved a perfect CEP score
on the Broad Institute’s leukemia data. The UCI Iris data also got a very good
CEP score. All other real world test data sets got reasonable CEP scores. The
Volatility test data achieved a reasonable CEP score and categorized, without
any losses, the day’s when the UVXY next day profit was 20% or above. There
were four estimated trading signals all of which resulted in next day UVXY
profits of 20% or more.



Title Suppressed Due to Excessive Length 15

6 Conclusion

In a previous series of papers (Korns 2011-2015), significant accuracy issues
were identified for state of the art symbolic regression systems and a compre-
hensive multi-island strategy for achieving extreme accuracy on a large well
defined set of theoretical problems was developed and tested both in noiseless
and in noisy training environments. Unfortunately these SR techniques do not
translate directly into an algorithm which will achieve extreme accuracy on
symbolic multi-class classification problems.

A first step in a planned investigation of extreme accuracy in symbolic
multi-class classification is taken with the introduction of the Multilayer Dis-
criminant Classification algorithm for optimizing the discriminant coefficients
in a multi-class discriminant equation. Distribution pof computational effort
Tests on the MDC algorithm demonstrate the desired properties of a high
level of accuracy for exact match GPCMs and also well behaved distribu-
tion of computational effort with more promising GPCM candidates receiving
more computational effort and less promising GPCM candidates receiving less
computational effort.

Also both theoretical and real world testing of the MDC algorithm,
wrapped in a temporary Pareto front strategy, resulted in preliminary but
promising CEP scores.

It is now a reasonable suspicion that the same symbolic regression accu-
racy issues, due primarily to the poor surface conditions of specific subsets of
the problem space, are also present in and obstructing extreme accuracy in
symbolic multi-class classification problems.

Future research must explore the possibility of developing an Extreme
Accuracy algorithm for the field of symbolic multi-class classification. Fur-
thermore any such extreme accuracy algorithm would ideally be accompanied
by a formal or informal proof of extreme accuracy on a well defined set of
theoretical problems.

Finally, to the extent that the reasoning in even an informal argument of
extreme accuracy can gain academic and commercial acceptance, a climate
of belief in symbolic multi-class classification can be created wherein SC is
increasingly seen as a ”must have” tool in the scientific arsenal.

Truly knowing the strength’s and weaknesses of our tools is an essential
step in gaining trust in their use.



16 Michael F. Korns

References

1. M. Castelli, S. Silva, L. Vanneshi, A. Cabral, M. Vasconcelos, L. Catarino, J.
Carrieras (2013). Land cover/land use multiclass classification using gp with
geometric semantic operators, in EvoApplications 13, pages 334-343, Berlin
Springer.

2. Gregory S Hornby (2006). Age-Layered Population Structure For reducing the
Problem of Premature Convergence, in GECCO 2006: Proceedings of the 8th
annual conference on Genetic and evolutionary computation. ACM Press, New
York.

3. V. Ingalalli, S. Silva, M. Castelli, L. Vanneschi (2014). A Multi-dimensional Ge-
netic Programming Approach for Multi-class Classification Problems, in Euro
GP 2014. Springer.

4. D Karaboga, B Akay (2009). A survey: algorithms simulating bee swarm intel-
ligence, in Artificial Intelligence Review. Springer, New York.

5. Michael Korns (2010). Abstract Expression Grammar Symbolic Regression, in
Genetic Programming Theory and Practice VIII. Springer, New York. Kauf-
mann Publishers, San Francisco California.

6. Michael Korns (2011). Accuracy in Symbolic Regression, in Genetic Program-
ming Theory and Practice IX. Springer, New York. Kaufmann Publishers, San
Francisco California.

7. Michael Korns (2012). A Baseline Symbolic Regression Algorithm, in Genetic
Programming Theory and Practice X. Springer, New York. Kaufmann Publish-
ers, San Francisco California.

8. Michael Korns (2013). Extreme Accuracy in Symbolic Regression, in Genetic
Programming Theory and Practice XI. Springer, New York. Kaufmann Pub-
lishers, San Francisco California.

9. Michael Korns (2014). Extremely Accurate Symbolic Regression for Large Fea-
ture Problems, in Genetic Programming Theory and Practice XII. Springer,
New York. Kaufmann Publishers, San Francisco California.

10. Michael Korns (2015). Highly Accurate Symbolic Regression for Noisy Training
Data, in Genetic Programming Theory and Practice XIII. Springer, New York.
Kaufmann Publishers, San Francisco California.

11. Mark Kotanchek, Guido Smits, and Ekaterina Vladislavleva (2008). Trustable
Symbolic Regression Models: Using Ensambles, Interval Arithmetic and Pareto
Fronts to Develop Robust and Trust-Aware Models, in Genetic Programming
Theory and Practice V. Springer, New York.

12. John R Koza (1992). Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, Cambridge Massachusetts.

13. John R Koza (1994). Genetic Programming II: Automatic Discovery of
Reusable Programs. The MIT Press, Cambridge Massachusetts.

14. John R Koza, Forrest H Bennett III, David Andre, Martin A Keane (1999).
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan

15. W Langdon, R Poli (2002). Foundations of Genetic Programming. Springer
16. J Platt, (1998). Sequential Minimal Optimization: A Fast Algorithm for Train-

ing Support Vector Machines. Technical Report ADVANCES IN KERNEL
METHODS - SUPPORT VECTOR LEARNING.

17. Trent McConaghy, (2011). FFX: Fastm Scalable, Deterministic Symbolic
Regression Technology, in Genetic Programming Theory and Practice IX.
Springer, New York.



Title Suppressed Due to Excessive Length 17

18. L. Munoz, S. Silva, L. Trujillo (2015). M3GP Multiclass Classification with GP,
in Euro GP 2015. Springer.

19. J.A., Nelder, and R. W. Wedderburn (1972). Generalized linear Models, in
Journal of the Royal Statistical Society, Series A, General, 135:370-384.

20. Poli, Riccardo, McPhee, Nicholas, Vanneshi, Leonardo, (2009). Analysis of the
Effects of Elitism on Bloat in Linear and Tree-based Genetic Programming, in
Genetic Programming Theory and Practice VI. Springer, New York.

21. Poli, Langdon, McPhee, (2008). A Field Guide to Genetic Programming.
22. Gandomi, Alavi, Ryan, (2015). Handbook of Genetic Programming Applica-

tions. Springer, Zurich Swizerland.
23. Guido Smits, and Mark Kotanchek (2005). Pareto-Front Exploitation in Sym-

bolic Regression, in Genetic Programming Theory and Practice II. Springer,
New York.

24. Michael Schmidt, Hod Lipson (2010). Age-Fitness Pareto Optimization, in Ge-
netic Programming Theory and Practice VI. Springer, New York.


